An Improved Non-local Denoising Algorithm
نویسندگان
چکیده
Recently, the NLMeans filter has been proposed by Buades et al. for the suppression of white Gaussian noise. This filter exploits the repetitive character of structures in an image, unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Even though the method is quite intuitive and potentially very powerful, the PSNR and visual results are somewhat inferior to other recent state-of-the-art non-local algorithms, like KSVD and BM-3D. In this paper, we show that the NLMeans algorithm is basically the first iteration of the Jacobi optimization algorithm for robustly estimating the noise-free image. Based on this insight, we present additional improvements to the NLMeans algorithm and also an extension to noise reduction of coloured (correlated) noise. For white noise, PSNR results show that the proposed method is very competitive with the BM-3D method, while the visual quality of our method is better due to the lower presence of artifacts. For correlated noise on the other hand, we obtain a significant improvement in denoising performance compared to recent wavelet-based techniques.
منابع مشابه
A New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملImproved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images
Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...
متن کاملImage deblurring and denoising with non-local regularization constraint
In this paper, we investigate the use of the non-local means (NLM) denoising approach in the context of image deblurring and restoration. We propose a novel deblurring approach that utilizes a non-local regularization constraint. Our interest in the NLM principle is its potential to suppress noise while effectively preserving edges and texture detail. Our approach leads to an iterative cost fun...
متن کاملRobust brain MRI denoising and segmentation using enhanced non-local means algorithm
Image denoising is an integral component of many practical medical systems. Non-local means (NLM) is an effective method for image denoising which exploits the inherent structural redundancy present in images. Improved adaptive non-local means (IANLM) is an improved variant of classical NLM based on a robust threshold criterion. In this paper, we have proposed an enhanced non-local means (ENLM)...
متن کاملDenoising Multi-view Images Using Non-local Means with Different Similarity Measures
We present a stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured from two different directions (stereo images). We use either Maximum Difference or Singular Value Decomposition similarity metrics for identifying locations of similar searching windows in the input images. We adapt the Non-local Means algorithm for denoising collected pat...
متن کاملImproved Non-Local Means Algorithm Based on Dimensionality Reduction
Non-Local Means is an image denoising algorithm based on patch similarity. It compares a reference patch with the neighboring patches to find similar patches. Such similar patches participate in the weighted averaging process. Most of the computational time for Non-Local Means is consumed to measure patch similarity. In this thesis, we have proposed an improvement where the image patches are pr...
متن کامل